

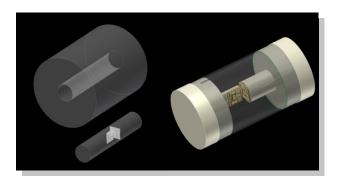
MicroCT Bar Pattern Phantom

The Micro-CT Bar Pattern Chip Phantom is a perfect tool to assess in-plane and axial spatial resolution of many Micro-CT systems in a direct visible manner.

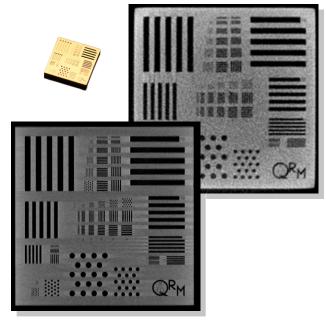
The bar pattern chip offers a good alternative for indirect methods to evaluate spatial resolution in high res X-ray imaging modalities. The phantom comprises two silicon chips, one orientated inplane and one perpendicular (axial) orientated to it. The phantom is available with chips placed in a full resin cylinder or fixed on a slim support in a hollow (airfilled) cylinder (both machined with high mechanical accuracy).

The 5 x 5 mm² chip contains bar (trenches) and point pattern with diameters from 5 to 150 μ m line/point thickness.

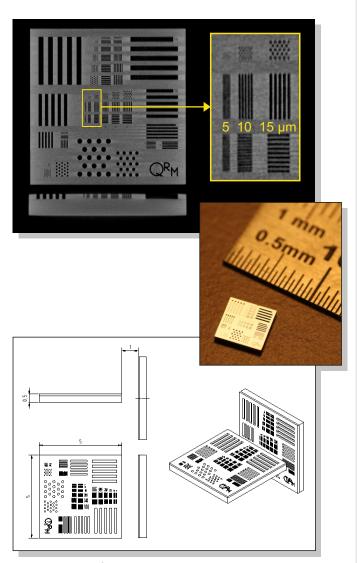
The depth of the structures varies between 80 and $120 \, \mu m$.


The different structures on the chip are arranged in such a way over the chip, that spatial resolution can be evaluated in the center as well as in the periphery of the image/chip in a single measurement.

linewidth [µm]	linepairs / mm		
5	100		
10	50		
15	33.3		
20	25		
25	20		
30	16.6		
50	10		
100	5		
150	3.3		


Bar / line pattern on the silicon chip

QRM-MicroCT-Barpattern (in air and resin)


QRM-MicroCT-Barpattern (3D rendering)

Micro-CT scans in air (left) with 5.5 μm voxel size and in resin (right) with 40 μm voxel size

MicroCT Bar Pattern Phantom

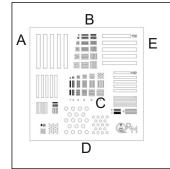
orientation of the bar pattern chips in phantom

Specifications

QRM-MicroCT-Barpattern-Phantom (resin)

Material of phantom	resin
Material of chip	silicon
Contrast	silicon / resin
Diameter	8 mm
Total length	40 mm
Weight	~ 10 g

The resin cylinder, including two chips, is available in other diameters above 8 mm upon request.


Adapter/Extension cylinders are available as well.

QRM-MicroCT-Barpattern-Phantom (air)

Material of phantom	air/plastic
Material of chip	silicon
Contrast	silicon / air
Wall thickness	0.2 mm
Diameter	20 mm
Total length	40 mm
Weight	~ 8 g

Chips are placed centrally in the phantom on a slim support.

Please note that the chips are not intended to be used for planar radiography.

Block	linewidth (µm)	linepairs per pattern	points (µm)	points per pattern
Α	5, 10, 25, 50, 100, 150	5		
В	5, 10, 15, 20, 25, 30	5	5, 10, 15, 20, 25, 30	18
С	5, 10, 15, 20, 25, 30	5	5, 10, 15, 20, 25, 30	18
D			5, 10, 25, 50, 100, 150	18
E	5, 10, 25, 50, 100, 150	5		

References:

Langner O., Karolczak M., Rattmann G. and Kalender W. A.;

Bar and Point Test Patterns Generated by Dry-Etching for Measurement of High Spatial Resolution in Micro-CT; 2009; IFMBE Proceedings, World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany Vol. 25/2, 428-431 Diagnostic Imaging